Закон Джоуля-Ленца — формулы, применение и примеры

uchenye Теория

История открытия закона

Закон Джоуля-Ленца был открыт благодаря работам английского физика Джеймса Прескотта Джоуля (1818-1889) и российского ученого Эмилия Христиановича Ленца (1804-1865).

Джоуль в 1841 году провел следующий опыт: он последовательно соединил три одинаковых по размерам проводника из разных металлов и пропустил через них одинаковый ток. При этом в проводниках выделялось разное количество теплоты. Джоуль сделал вывод, что нагревание зависит не только от силы тока, но и от сопротивления материала.

Практически одновременно в 1842 году аналогичные исследования проводил Ленц. Он также обнаружил, что количество выделяемого тепла пропорционально квадрату силы тока и сопротивлению проводника.

Работы Джоуля и Ленца заложили основы систематического изучения теплового действия электрического тока. В честь двух ученых закон, устанавливающий количественную зависимость между выделяемым теплом и параметрами цепи, был назван законом Джоуля-Ленца.

Портреты Джеймса Прескотта Джоуля и Эмилия Христиановича Ленца - ученых, открывших закон Джоуля-Ленца.

Джеймс Прескотт Джоуль (1818-1889) — английский физик, один из основоположников учения об энергии и её превращениях. Первые уроки физики получил у Джона Дальтона. Проводил исследования в области электричества, магнетизма, теплоты.

Эмилий Христианович Ленц (1804-1865) — русский физик, академик Петербургской АН. Занимался исследованиями электрических и магнитных явлений. Открыл явление обратимости электрических машин.

Закон джоуля Ленца: определение

Определение 1

Закон Джоуля-Ленца — один из законов физики, который определяет количественную меру воздействия тепла электрического тока.

Закон Джоуля-Ленца — один из законов физики, который определяет количественную меру воздействия тепла электрического тока.

Теорема 1

Формулировка классического закона Джоуля-Ленца гласит: мощность того тепла, который выделяется в проводнике в процессе протекания сквозь проводник электрического тока, соответствует умножению плотности электрического поля на напряженность.

Посмотрите на вид алгебраической формулы Джоуля-Ленца:

Простое и понятное объяснение физического смысла теории Джоуля-Ленца: электрический ток во время протекания по проводнику являет собой перемещение заряда электрического под влиянием электрического поля. Соответственно, электрическое поле во время данного процесса совершает некую работу. Эта работа используется для нагрева проводника. Таким образом можно говорить о том, что энергия превращается в качественно дифференциальное явление — тепло.

Примечание 1

Однако стоит понимать, что излишний нагрев проводника с током, а также электрических приборов допускать не рекомендуется, потому что перегрев может привести к повреждению электрических приборов. Опасно излишне перегревать оборудование в случае коротких замыканий проводов. В это время по проводникам может протекать много тока.

Закон Джоуля-Ленца для тонких проводников в интегральной форме звучит так:

Теорема 2

Величина теплоты, выделяющаяся за определенное время на определенном участке цепи, определяется как произведение силы тока, возведенной в квадрат, и сопротивления участка цепи.

Сама формула выглядит так:

В данной формуле:

  • Q обозначает количество теплоты, которая выделилась;
  • I обозначает количество тока;
  • R обозначает сопротивление проводника/проводников;
  • t обозначает время действия;
  • k обозначает тепловой аналог работы. Значение этого параметра зависит от разрядности единиц, в которых измеряются значения, используемые в формуле.

Примечание 2

Теорему Джоуля-Ленца характеризуют как имеющую общий характер, потому что она не имеет корреляции с происхождением сил, которые генерируют ток. Данный закон справедлив для электролитов, полупроводников и проводников.

Уравнение Джоуля-Ленца

Посмотрим, как данный закон выражается в математическом виде. Допустим, на некоем участке цепи проходит электрический ток и вызывает нагревание проводника. Если на этом участке нет каких-либо механических процессов или химических реакций, требующих энергозатрат, выделенная проводником теплота Q равна работе тока A.

Q = A

Поскольку А = IUt, где I — сила тока, U — напряжение, а t — время, Q = IUt.

Теперь вспомним, что напряжение можно выразить через сопротивление и силу тока U = IR. Подставим это в формулу:

Q = IUt = I(IR)t = I2Rt

Q = I2Rt

Мы выразили количество теплоты в проводнике через сопротивление — эта формула для закона Джоуля-Ленца называется интегральной.

Но бывает так, что сила электрического тока неизвестна, зато есть информация о напряжении на участке цепи. В таком случае нужно использовать закон Ома:

I = U/R

Исходя из этого, закон Джоуля-Ленца можно записать в виде дифференциальной формулы:

613e2f88bbb28453153058

Напомним, что такое уравнение, как и предыдущее, верно только в том случае, когда вся работа электрического тока уходит на выделение тепла и нет других потребителей энергии.

Итак, у нас есть две формулы для определения количества теплоты, выделяемой проводником при прохождении через него электричества:

613e2fcf82d5b079798315

При расчетах используют следующие единицы измерения:

  • количество тепла Q— в джоулях (Дж);
  • силу тока I — в амперах (А);
  • сопротивление R — в омах (Ом);
  • время t — в секундах (с).

Дифференциальная форма

Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax)2и в начале пробега (mu2)/2 , то есть

формула приращение энергии электрона

Здесь u – скорость хаотического движение (векторная величина), а υmax– максимальная скорость электрического заряда в данный момент времени.

Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение 2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:

Формула полной энергии

Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент,  E – напряжённость поля.

Интегральная форма

Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:

Формула мощности P выделяемой в объеме

гдеR – полное сопротивление проводника.

Учитывая, чтоU = I×R, из последней формулы имеем:

  • P = U×I;
  • P = I2R;
  • P = U2/R.

Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:

Формула количества теплоты

Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.

Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.

Физический смысл закона

Закон Джоуля-Ленца, с помощью которого определение количества тепла, выделяющегося при воздействии силы тока в проводнике, осуществляется достаточно просто, подтверждает также, что это количество напрямую зависит от сопротивления. Сам нагрев происходит в результате того, что свободные электроны, перемещаясь под действием электрополя, бомбардируют атомы молекул материала проводника. При этом они передают им собственную кинетическую энергию, преобразующуюся в тепловую.

Чем выше сила тока, тем большее количество электронов проходит через сечение проводника, и тем чаще происходят столкновения между ними и атомами. Соответственно, проводнику передается большое количество энергии, и он сильно нагревается.

В проводнике с большим сечением столкновений частиц будет намного меньше, следовательно, выделится меньше тепла. С учетом того, что между удельным сопротивлением любого проводника и его сечением существует обратно пропорциональная зависимость, можно сказать, что чем выше сопротивление проводника, тем сильнее он нагревается.

Эксперимент, подтверждающий закон Джоуля-Ленца

Как видим, руководствуясь законом Джоуля-Ленца, можно сделать два вывода:

  1. С увеличением сопротивления проводника, будет увеличиваться и количество выделяемой теплоэнергии. Иными словами, количество теплоты прямо пропорционально сопротивлению.
  2. Выделившееся количество теплоты в проводнике за время прохождения тока,  зависит от мощности последнего. Иными словами, если увеличивается мощность тока, то количество свободных электронов, проходящих через проводник за единицу времени, тоже будет увеличиваться.

Согласно закону сохранения энергии в физике, в проводнике под воздействием тока происходит преобразование кинетической энергии свободных заряженных частиц в тепловую внутреннюю энергию.

Практическая польза закона Джоуля-Ленца

При сильном нагревании можно наблюдать излучение видимого спектра света, что происходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучают тепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим, но можем ощутить своими тепловыми рецепторами.

Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.

Проанализировав выражение U2/R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.

В борьбе с короткими замыканиями используют:

  • автоматические выключатели:
  • электронные защитные блоки;
  • плавкие предохранители;
  • другие защитные устройства.

Природа тепла в проводниках

Разберемся, как происходит нагрев проводника и каким образом этот процесс отвечает формулировке законе Джоуля-Ленца. Как известно, электрический ток представляет собой направленный поток электронов, если речь идет о металлах, и направленный поток ионов — если о растворах электролитов. Проводником называют такой металл, в котором много свободных электронов.

При подключении проводника к сети электроны начинают двигаться в одном направлении под действием электрического поля. При движении они сталкиваются с атомами проводника и передают им свою кинетическую энергию. Чем выше скорость заряженных частиц, тем чаще происходят такие столкновения и больше выделяется кинетической энергии. Часть этой энергии трансформируется в тепло, поэтому проводник нагревается.

Нагрев проводника

Высокая сила тока означает, что через сечение проводника проходит много свободных электронов и столкновения происходят часто. Соответственно, частицам проводника передается много энергии, и он греется сильнее. Именно поэтому в законе Ленца-Джоуля говорится о том, что количество выделяемой теплоты пропорционально квадрату силы тока.

Теперь представим, что мы соединили в одну цепь последовательно два проводника, при этом у второго сечение больше, чем у первого. Во втором столкновений частиц будет меньше, а значит — выделится меньше тепла. Вспоминаем, что удельное сопротивление проводника обратно пропорционально его сечению. Чем меньше сечение материала, тем выше его сопротивление и тем сильнее он нагревается. Вот мы и описали тепловое действие тока в соответствии с законом Джоуля-Ленца.

Применение в практической жизни

Данный закон применяется в обычной жизни широко. Например, вольфрамовая нить в лампах накаливания, дуги в электросварках, нить накаливания в электрообогревателе. К приборам, которые работают по закону Джоуля-Ленца, также относят: утюги, фены, электрочайники, паяльники, варочные плиты и т.д.

Данный принцип имел огромное влияние на бытовое применение электрического тока. В 19 веке благодаря этой теории стало возможным создание точных измерительных приборов, в основе работы которых лежало сокращение проволочной спирали во время нагрева прохождением тока определенной величины. Например, стрелочные вольтметры, а также амперметры.

В то же время начинают появляться модели электрических обогревателей, плавильных печей, а также тостеров. Для их создания был использован проводник с высоким удельным сопротивлением, что помогало получить высокие температуры.

Также появились самые первые плавкие предохранители, прерыватели цепи биметаллические, которые основаны на разнице нагрева проводника с различным удельным сопротивлением. Когда люди заметили, что при соответственной силе тока проводник с большим показателем сопротивления может нагреться до красного цвета, закон Джоуля-Ленца начал использоваться для создания источников света. В это время появляются первые лампы.

Также эффект данной теории используется широко в промышленности: в химической, металлургической и т.д.

Примеры решения задач

Самые важные формулы для решения задач с законом Джоуля-Ленца:

Задача 1

Какое количество тепла будет выделено спиралью электроплитки за 15 минут с сопротивлением в 30 Ом, если сила тока цепи составляет 1,5 А?

Дано:

t = 15 мин.

R = 30 Ом.

I = 1,5 А.

Нужно найти Q.

Решение:

Переводим минуты в секунды: 15 минут * 60 = 900 секунд.

Получившуюся сумму обычно сокращают до килоджоулей.

Ответ: 60,75 кДж.

Задача 2

Какое количество тепла будет выделено электрической спиралью за 20 минут, если напряжение равно 215 В, а сила тока цепи 3 А?

Дано:

t = 20 минут.

U = 215 В.

I = 3 А.

Нужно найти Q.

Решение:

Переводим минуты в секунды: 20 минут * 60 = 1200 секунд.

Q = 3 * 215 * 1200 = 774 000 = 774 кДж.

Ответ: 774 кДж.

Источники
  • https://odinelectric.ru/theory/basics/zakon-dzhoulya-lentsa
  • https://Wika.TutorOnline.ru/fizika/class/8/osnovnye-svedeniya-o-zakone-dzhoulyalencza
  • https://skysmart.ru/articles/physics/zakon-dzhoulya-lenca
  • https://www.asutpp.ru/zakon-dzhoulya-lentsa.html
  • https://ProFazu.ru/knowledge/electrical/zakon-dzhoulya-lentsa.html

Как вам статья?

Павел
Павел
Бакалавр "210400 Радиотехника" – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать
Пишите свои рекомендации и задавайте вопросы

Оцените статью
Полезная Электроника