Умножитель постоянного напряжения своими руками

Общие сведения об умножителях напряжения

Суть работы умножителя заключается в преобразовании переменного напряжения, получаемого из низковольтного источника, в высокое напряжение постоянного тока. Есть разные варианты данных приборов такие как, умножитель напряжения Шенкеля и другие схемы, проектируемые для конкретной аппаратуры.

В электронике к умножителям напряжения относятся специальные схемы, с помощью которых уровень входящего напряжения преобразуется в сторону увеличения. Одновременно эти устройства выполняют еще и функцию выпрямления. Умножители применяются в тех случаях, когда нежелательно использовать в общей схеме дополнительный повышающий трансформатор из-за сложности его устройства и больших размеров.
В некоторых случаях трансформаторы не могут поднять напряжение до требуемого уровня, поскольку между витками вторичной обмотки может случиться пробой. Данные особенности следует учитывать при решении задачи, как сделать различные варианты удвоителей своими руками.

В схемах умножителей обычно используются свойства и характеристики однофазных однополупериодных выпрямителей, работающих на емкостную нагрузку. В процессе работы этих устройств между определенными точками создается напряжение с величиной, превышающей значение входного напряжения. В качестве таких точек выступают выводы диода, входящего в схему выпрямителя. При подключении к ним еще одного такого же выпрямителя, получится схема несимметричного удвоителя напряжения.

Таким образом, каждый умножитель напряжения как повышающее устройство может быть симметричным и несимметричным. Кроме того, все они разделяются на категории первого и второго рода. Схема симметричного умножителя представляет собой две несимметричные схемы, соединенные между собой. У одной из них происходит изменение полярности конденсаторов и проводимости диодов. Симметричные умножители имеют лучшие электрические характеристики, в частности выпрямляемое напряжение обладает удвоенной частотой пульсаций.

Различные типы таких приборов повсеместно используются в электронной аппаратуре и оборудовании. С помощью этих устройств появилась возможность осуществлять умножение и получать напряжение в десятки и сотни тысяч вольт. Сами умножители напряжения отличаются незначительной массой, малыми габаритами, они просты в изготовлении и дальнейшей эксплуатации.

Определение умножителя напряжения

Разрядники низких и средних классов напряжения: виды и принцип работы

Их применяют в радиоэлектронике: медицинской и телевизионной аппаратуре, измерительной технике, бытовой технике и др. Умножитель напряжения составляют диоды и конденсаторы, которые соединяют специальным образом. Умножители способны сформировать напряжение до вольт, при этом имеют небольшую массу и размер. Умножители просты в изготовлении, их несложно рассчитываются.

Принцип работы

Для того чтобы представить себе как работает умножитель напряжения, рассматривается простейшая схема однополупериодного устройства, показанного на рисунке. Когда начинает действовать отрицательный полупериод напряжения, диод Д1 открывается и через него осуществляется зарядка конденсатора С1. Заряд должен сравняться с амплитудным значением подаваемого напряжения.

При наступлении периода с положительной волной происходит зарядка следующего конденсатора С2 через диод Д2. В этом случае заряд приобретает высокие удвоенные значения по сравнению с поданным напряжением. Далее наступает отрицательный полупериод, в течение которого до удвоенного значения заряжается конденсатор С3. Таким же образом, во время дальнейшей смены полупериода, выполняется зарядка конденсатора С4, вновь с удвоенным значением.

Для того чтобы запустить устройство, требуются полные периоды напряжения в количестве нескольких циклов, создающие напряжения на диодах. Величина напряжения, получаемая на выходе, состоит из суммы напряжений конденсаторов С2 и С4, соединенных последовательно и заряжаемых постоянно. В конечном итоге, образуется величина выходного переменного напряжения, которое в 4 раза превышает значение напряжения на входе. В этом и заключается принцип работы умножителя напряжения.

Самый первый конденсатор С1, полностью заряженный, имеет постоянное значение напряжения. То есть, он выполняет функцию постоянной составляющей Ua, применяемой в расчетах. Следовательно, можно и дальше наращивать потенциал умножителя, подключая дополнительные звенья, сделанные по тому же принципу, поскольку напряжение на диодах в каждом из этих звеньев будет равно сумме входного напряжения и постоянной составляющей. За счет этого получается любой коэффициент умножения с требуемым значением. Напряжение на всех конденсаторах, кроме первого будет равным 2х Ua.

Советуем к прочтению:   LM317 и LM317T схемы включения, datasheet, характеристики

Если в умножителе используется нечетный коэффициент, для подключения нагрузки используются конденсаторы, расположенные в верхней части схемы. При четном, наоборот, задействуются нижние конденсаторы.

Где применяют устройство

Умножители нашли свое применение в разных типах устройств, это: системы лазерной накачки, устройства излучения рентгеновской волны в их блоках высокого напряжения, для подсветки дисплеев жидкокристаллической структуры, насосах ионного типа, лампах бегущей волны, ионизаторах воздушной среды, системах электростатических, ускорителях элементарных частиц, аппаратах для копирования, телевизорах и осциллографах с кинескопами, а также там, где требуется высокое постоянное электричество небольшой силы тока.

Схема умножителя

Умножитель напряжения на диодах и конденсаторах

При изготовлении электронных устройств, в частности блоков питания, в некоторых случаях возникает необходимость иметь выпрямленное напряжение большей величины, чем на клеммах вторичной обмотке трансформатора или в розетке 220 В.

Например, после выпрямления сетевого напряжения 220 В на фильтрующем конденсаторе при очень малой нагрузке можно получить максимум амплитудное значение переменного напряжения 311 В. Следовательно конденсатор зарядится до указанного значения.

Однако применяя умножитель напряжения можно повысить его до 1000 В и более.

Однополупериодный умножитель

На рис.1 приведена схема однополупериодного последовательного умножителя.

973c1893d49d5f9e6b2ec089d1156835

В течение отрицательного полупериода напряжения происходит зарядка конденсатора через диод , который открыт. Конденсатор заряжается до амплитудной величины приложенного напряжения . В течение положительного полупериода заряжается конденсатор через диод до разности потенциалов . Далее в отрицательный полупериод конденсатор заряжается через диод до разности потенциалов . В очередной положительный полупериод конденсатор заряжается до напряжения . При этом умножитель запускается за несколько периодов изменения напряжения. Напряжение на выходе постоянное и оно является суммой напряжений на конденсаторах и , которые постоянно заряжаются, то есть составляет величину, равную .

Обратное напряжение на диодах и рабочее напряжение конденсаторов в таком умножителе равно полной амплитуде входного напряжения

При практической реализации умножителя следует обращать внимание на изоляцию элементов, чтобы не допускать коронного разряда, который может вывести прибор из строя. Если необходимо изменить полярность напряжения на выходе, то меняют полярность диодов при соединении

Последовательные умножители применяют особенно часто, так как они универсальны, имеют равномерное распределение напряжения на диодах и конденсаторах. С их помощью можно реализовать большое количество ступеней умножения.

Применяют, также параллельные умножители напряжения. Для них необходима меньшая емкость конденсатора на одну ступень умножения. Но, их недостатком считают увеличение напряжения на конденсаторах с ростом количества ступеней умножения, что создает ограничение в их использовании до напряжения выхода около 20 кВ. На рис. 2 приведена схема однополупериодного параллельного умножителя напряжения.

eff28cf2b79dd003522daed7cae5c130

Для того чтобы рассчитать умножитель следует знать основные параметры: входное переменное напряжение, напряжение и мощность выхода, необходимые размеры (или ограничения в размерах), условия при которых умножитель будет работать. При этом следует учесть, что напряжение входа должно быть менее чем 15 кВ, частота от 5 до 100 кГц, напряжение выхода менее 150 кВ. Температурный интервал обычно составляет -55. Обычно мощность умножителя составляет до 50 Вт, но встречаются и более 200 Вт.

Для последовательного умножителя, если частота на входе в умножитель постоянна, то выходное напряжение вычисляют при помощи формулы:

где — входное напряжение; – частота напряжения на входе; N – число ступеней умножения; C – емкость конденсатора ступени; I – сила тока нагрузки.

Умножитель напряжения многократный

Процессы в схеме утроения напряжения протекают в такой последовательности: сначала заряжаются конденсаторы С1 и С3 через сопротивление R и соответствующие диоды VD1 и VD3. В следующий полупериод С2 через VD2 заряжается до удвоенного напряжения (С1 + обмотка) и на сопротивлении нагрузки получается утроенное значение.

Советуем к прочтению:   Трехпозиционный переключатель: галетный, с нулевым положением, пакетные и с фиксацией

Больший интерес имеет следующий умножитель напряжения. Рассмотрим принцип его работы. Когда потенциал точки 1 положителен относительно точки 2 ток протекает по пути через VD1 и С1 заряжая конденсатор.

В следующий полупериод, когда ток изменил свое направление, заряжается второй конденсатор через второй диод до величины, равного сумме напряжений на С1 и обмотке трансформатора. При этом С1 разрядится. В третий полупериод, когда первый конденсатор снова начнет заряжаться, С2 через третий диод разрядится на С3, зарядив его до двойного значения относительно выводов обмотки.

К концу третьего полупериода на нагрузку будет подано суммарное напряжение заряженных конденсаторов С1 и С3, т. е. примерно утроенное значение.

По аналогии с рассмотренными схемами могут быть построены схемы с большей кратностью умножения. Но следует помнить, что с увеличением числа умножений по причине большего содержание в схеме диодов и конденсаторов возрастает внутренне сопротивление выпрямителя, что приводит к дополнительной просадке напряжения.

Схемы с умножением напряжения применяются для питания малой нагрузки, т.е. сопротивление нагрузки должно быть высоким. В противном случае нужно использовать неполярные конденсаторы большой емкости, рассчитанные на высокое напряжение. Это связано с тем, что при значительном токе нагрузки конденсаторы будут быстро разряжаться, что вызовет недопустимо большие пульсации на нагрузке.

Как рассчитать умножитель

Выполняя расчет устройства умножения, необходимо отталкиваться от исходных данных, которыми являются: нужный для нагрузки ток (In), напряжение на выходе (Uout), коэффициент пульсирования (Kp). Минимальная величина емкости элементов конденсаторов, выраженная в мкФ, определяется по формуле: С(n)=2,85*n*In/(Kp*Uout), где:

  • n – число, во сколько раз увеличивается входное электричество;
  • In – ток, протекающий в нагрузке (мА);
  • Kp – коэффициент пульсирования (%);
  • Uout – напряжение, полученное на выходе устройства (В).

Увеличивая полученную расчетами емкость в два или три раза, получают величину емкости конденсатора на входе схемы C1. Такой номинал элемента позволяет получить на выходе сразу полное значение напряжения, а не ждать, пока пройдет некоторое количество периодов. Когда работа нагрузки не зависит от скорости нарастания электричества до номинального на выходе, емкость конденсатора можно взять идентичную расчетным значениям.

Лучше всего для нагрузки, если коэффициент пульсаций умножителя напряжения на диодах не превышает величины 0,1 %. Удовлетворительным также является наличие пульсаций до 3 %. Все диоды схемы выбирают из расчета, чтобы они свободно могли выдержать силу тока, в два раза превышающую его значение в нагрузке. Формула расчета прибора с большой точностью выглядит так: n*Uin — (In*(n3 + 9*n2/4 + n/2)/(12 *f* C))=Uout, где:

  • f – частота напряжения на входе устройства (Гц);
  • C – конденсаторная емкость (Ф).

Примерный расчет схемы умножителя

Перед тем как начинать расчет, задаются основные характеристики устройства. Это особенно важно, когда необходимо изготовить умножитель напряжения своими руками. В первую очередь, это значения входного и выходного напряжения, мощность и габаритные размеры. Следует учитывать и некоторые ограничения, касающиеся параметров напряжения. Его величина на входе должна быть не более 15 кВ, границы диапазона частоты составляют от 5 до 100 кГц.

Рекомендуемое значение выходного высоковольтного напряжения – не выше 150 кВ. Величина выходной мощности умножителя напряжения составляет в пределах 50 Вт, хотя можно создать устройство и с более высокими параметрами, в котором мощность достигает даже 200 Вт.

Выходное напряжение находится в прямой зависимости с токовыми нагрузками и его можно рассчитать с помощью формулы: Uвых = N х Uвх – (I (N3 + +9N2 /4 + N/2)) / 12FC, в которой N соответствует количеству ступеней, I – токовой нагрузке, F – частоте напряжения на входе, С – емкости генератора. Если заранее задать требуемые параметры, данная формула поможет легко рассчитать, какая емкость должна быть у конденсаторов, применяемых в схеме.

Советуем к прочтению:   Микросхема L7805CV, характеристики, параметры, даташит, аналоги

Схемы выпрямителей с умножением напряжения

Схемы с умножением напряжения целесообразно применять для получения достаточно высоких выпрямленных напряжений при малых токах нагрузки. Эти схемы применяют для питания электронно-лучевых трубок, фотоумножителей, в установках для испытания электрической прочности.

Схемы выпрямителей, работающих с умножением напряжения, содержат несколько выпрямителей с емкостным фильтром, выходные напряжения которых суммируются.

Однофазная несимметричная схема удвоения напряжения

Схема на рис.5 представляет собой два однофазных однополупериодных выпрямителя. Первый выпрямитель VD1, C1 является однополупериодным выпрямителем с параллельно включенным диодом. За счет его работы конденсатор C1 заряжается до амплитудного напряжения U2. На нем образуется постоянное напряжение UC1=U2m. На диоде VD1 образуется пульсирующее напряжение. Максимальное значение напряжения на нем

UVD1,MAX=UC1+U2m .

Это пульсирующее напряжение окончательно выпрямляется и сглаживается обычным выпрямителем с емкостной нагрузкой VD2, C2. В итоге получаем выходное напряжение U0 примерно равное удвоенному значению амплитуды напряжения вторичной обмотки трансформатора.

Частота пульсации выпрямленного напряжения на нагрузке равна частоте сети.

Обратное напряжение на диодах равно удвоенной амплитуде напряжения вторичной обмотки трансформатора.

Основным недостатком схемы является то, что основная частота пульсации выпрямленного напряжения, равна частоте сети.

Для увеличения кратности выпрямленного напряжения увеличивают число диодов и конденсаторов, включая их аналогично описанной схеме. На рис. 6, а показана схема умножения напряжения, где в целях получения различной кратности умножения напряжения предусмотрены соответствующие варианты подключения нагрузки к схеме (показаны пунктиром), а именно: присоединяя нагрузку к точкам б, в и г схемы, получим умножение напряжения соответственно в 2, 3 и 4 раза. В этой схеме все конденсаторы с нечетными номерами (С1, С3) заряжаются в один полупериод напряжения и2, а с четными номерами (С2, С4) — в другой полупериод.

Чем выше кратность умножения напряжения, тем большими будут пульсации выпрямленного напряжения при одинаковой емкости конденсаторов, так как для зарядного и разрядного токов они включены последовательно.

Недостатки таких выпрямителей аналогичны недостаткам однополупериодного однофазного выпрямителя с емкостной нагрузкой. Кроме того, они обладают увеличенным внутренним сопротивлением из-за последовательного включения диодов.

Двухфазные симметричные схемы

Двухфазные симметричные схемы умножения можно; получить соединением нескольких несимметричных схем.

Конденсаторы с нечетными номерами (С1, С3, С5, C1’, С3’, С5’) заряжаются токами соответствующих диодов один раз в период напряжения вторичной обмотки, конденсаторы с четными номерами (С2, С4, С6) — дважды, поэтому частота пульсации выпрямленного напряжения в 2 раза больше частоты сети.

Изготовление удвоителя напряжения

Припаиваем конденсаторы последовательно друг к другу: плюс к минусу.
Также припаиваем диоды последовательно друг к другу: анод к катоду. И спаиваем эти две пары паралельно друг другу.
Схематично все это выглядит так:
Подключаем наш удвоитель к трансформатору.
Значение переменного напряжение с которого равно примерно 11,5 В. А с выхода удвоителя уже выходит примерно 30 В постоянного напряжения.
Для тех кто не понял как 11,5 В превратились в 30 поясняю: 11,5 В это переменное напряжение которое измеряется по среднеквадратическому значению. После выпрямления оно бут равно примерно 14,4 В. А после удвоения примерно 29-30 В, учитывая погрешность измерения и отсутствие нагрузки.
При использовании данной схемы, так же учитывайте, что ток на трансформатор также удваивается. И если нагрузка потребляет примерно 0,2 Ампер, ток на низковольтной обмотке трансформатора будет равен 0,4 Ампер.

Источники
  • https://urpsvet.ru/napryazhenie/umnozhitel-postoyannogo-napryazheniya-svoimi-rukami.html
  • https://synergetic59.ru/voprosy-praktiki/utroenie-napryazheniya-shema.html
  • https://FB.ru/article/61679/umnojitel-napryajeniya-printsip-rabotyi-i-sfera-primeneniya
  • https://SdelaySam-SvoimiRukami.ru/6156-kak-udvoit-naprjazhenie-s-transformatora-prosto.html

Как вам статья?

Павел
Павел
Бакалавр "210400 Радиотехника" – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать
Пишите свои рекомендации и задавайте вопросы
Рейтинг
( 1 оценка, среднее 5 из 5 )
Записки радиолюбителя
Adblock
detector