- Теория импульсных блоков питания
- Принцип действия ИИП и его устройство
- Отличие от трансформатора
- Виды и принцип работы импульсных источников питания
- Разновидности блоков питания
- Обратноходовой импульсный источник питания
- Управление ШИМ-контроллером
- Преимущества и недостатки ИБП
- Преимущества
- Недостатки
- Схемы и изготовление импульсных блоков питания
- Мощный импульсный блок на ir2153
- Можно ли сделать импульсный блок питания своими руками?
- Как собрать: пошаговая инструкция
- Проверка конструкции
- Сфера применения ИБП
Теория импульсных блоков питания
В обычных источниках питания изменение напряжения и гальваническая развязка выполнялись на трансформаторе со стальным сердечником, работающим на частоте 50 Гц, полупроводниковым выпрямителем и линейным стабилизатором напряжения.
Однако КПД этой схемы очень низкий (не превышает 50%), большая часть мощности преобразуется в тепло в трансформаторе, диоде и аналоговом стабилизаторе. Большая номинальная выходная мощность требует наличия сетевого трансформатора повышенного размера и большой потери тепла. Этого неудобства можно избежать, увеличив рабочую частоту до нескольких сотен кГц и заменив регулятор напряжения электронным ключом с интеллектуальным управлением. Их задача – преобразовать сетевое напряжение в постоянное, а затем в выпрямленное напряжение, выполняемое быстрым переключением транзисторов. В результате получается высокочастотное прямоугольное напряжение, которое преобразуется импульсным трансформатором и выпрямителем.
Стабилизация выходной мощности достигается изменением ширины импульса при постоянной частоте или включением переключения в определенные периоды времени в зависимости от нагрузки схемы. Наиболее важные преимущества SMPS, сравнимые с обычными блоками питания:
- малый вес, уменьшенный объем, повышенная эффективность
- малая емкость фильтрующих конденсаторов для высоких частот переключения
- отсутствие слышимых помех из-за того, что частота переключения находится за пределами слышимого диапазона
- простое управление различными выходными напряжениями
- легко снижать высокое сетевое напряжение
С развитием мощных транзисторов с быстрой коммутацией для высоких частот, стало возможным использовать ИИП, работающие на частотах до 1 МГц. С помощью этого типа резонансных трансформаторов рабочие частоты могут быть увеличены даже до 3 МГц. Тем не менее, эти преимущества уменьшаются из-за нежелательного высокочастотного излучения, а также из-за более низкой скорости реакции на возможные изменения нагрузки.
Правда доступность новых магнитных материалов для трансформаторов, работающих в диапазоне частот примерно до 1 МГц, а также достижения в области источников питания стимулировали разработку новых высокочастотных сердечников трансформаторов.
Эта тенденция привела к разработке новых ферритов Mn-Zn с очень мелкой структурой зерен и материалов с уменьшенными гистерезисными потерями, что позволяет передавать мощность в диапазоне от 1 до 3 МГц. Высокие рабочие частоты приводят к дальнейшему уменьшению размеров ядер и, следовательно, всего блока питания. Новый принцип конструкции в планарной технологии позволяет изготавливать высокочастотные трансформаторы с кардинально уменьшенными размерами (плоские трансформаторы, низкопрофильные трансформаторы). Эта технология оказывает сильное влияние на разработку преобразователей постоянного и переменного тока, а также на производство гибридных импульсных источников питания.
Но вернёмся к теории. Импульсный источник питания работает контролируя среднее напряжение, подаваемое на нагрузку. Это делается путем размыкания и замыкания переключателя (обычно мощного полевого транзистора) на высокой частоте. Система более известна как широтно-импульсная модуляция – ШИМ. Схема ШИМ – самая важная, которая отличает этот тип блока питания, поэтому стоит вспомнить хотя бы само название.
На приведенной диаграмме показаны идеи, лежащие в основе работы ШИМ, и ее довольно просто понять: V = напряжение, T = период, t (вкл.) = длительность импульса. Среднее напряжение приложенное к нагрузке, можно объяснить следующей формулой:
Vo (av) = (t (on) / T) x Vi
Импульсы следуют друг за другом быстро (это порядка многих кГц, то есть тысячи раз в секунду), и для того, чтобы нагрузка не видела внезапных импульсов, необходимы конденсаторы, обеспечивающие относительно постоянный уровень напряжения. Уменьшение времени t (on) вызывает уменьшение среднего значения выходного напряжения Vo (av) и наоборот – увеличение длительности высокого вольтажного состояния t (on) увеличивает выходное напряжение Vo (av).
Предположим, что импульсный блок питания подает напряжение +12 В на нагрузку 6 А. Теперь, когда ток нагрузки внезапно повышается до 8 А, напряжение автоматически снижается до + 10,6 В. За доли секунды обратная связь, отправленная в схему ШИМ, заметит падение напряжения и включит полевой МОП-транзистор на более длительный период времени t (on). Благодаря этому схема может передавать больше мощности и восстанавливать выходное значение напряжения до +12 В.
Частота, с которой работает ШИМ, обычно находится в диапазоне от 30 кГц до 150 кГц, но может быть намного выше.
Принцип действия ИИП и его устройство
Импульсный источник питания — это устройство, которое работает по принципу инвертора, то есть сначала преобразует переменное напряжение в постоянное, а потом снова из постоянного делает переменное нужной частоты. В конечном итоге последний каскад преобразователя всё равно основан на выпрямлении напряжения, так как большинство приборов всё же работают на пониженном постоянном напряжении. Суть уменьшения габаритов этих питающих и преобразующих устройств построена на работе трансформатора.
Дело в том, что трансформатор не может работать с постоянным напряжением. Просто-напросто на выходе вторичной обмотки при подаче на первичную постоянного тока не будет индуктироваться ЭДС (электродвижущая сила). Для того чтобы на вторичной обмотке появилось напряжения оно должно меняться по направлению или же по величине. Переменное напряжение обладает этим свойством, ток в нём меняет своё направление и величину с частотой 50 Гц. Однако, чтобы уменьшить габариты самого блока питания и соответственно трансформатора, являющегося основой гальванической развязки, нужно увеличить частоту входного напряжения.
При этом импульсные трансформаторы, в отличие от обычных линейных, имеют ферритовый сердечник магнитопровода, а не стальной из пластин. И также современные блоки питания работающие по этому принципу состоят из:
- выпрямителя сетевого напряжения;
- генератора импульсов, работающего на основе ШИМ (широтно-импульсная модуляция) или же триггера Шмитта;
- преобразователя постоянного стабилизированного напряжения.
После выпрямителя сетевого напряжения генератор импульсов с помощью ШИМ генерирует его в переменное с частотой около 20–80 кГц. Именно это повышение с 50 Гц до десятков кГц и позволяет значительно уменьшить, и габариты, и массу источника питания. Верхний диапазон мог быть и больше, однако, тогда устройство будет создавать высокочастотные помехи, которые будет влиять на работу радиочастотной аппаратуры. При выборе ШИМ стабилизации обязательно нужно учитывать также и высшие гармоники токов.
Даже при работе на таких частотах эти импульсные устройства вырабатывают высокочастотные помехи. А чем больше их в одном помещении или в одном закрытом помещении тем больше их в радиочастотах. Для поглощения этих негативных влияний и помех устанавливаются специальные помехоподавляющие фильтры на входе устройства и на его выходе.
Это наглядный пример современного импульсного блока питания применяемого в персональных компьютерах.
A — входной выпрямитель. Могут применяться полумостовые и мостовые схемы. Ниже расположен входной фильтр, имеющий индуктивность;
B — входные с довольно большой емкостью сглаживающие конденсаторы. Правее установлен радиатор высоковольтных транзисторов;
C — импульсный трансформатор. Правее смонтирован радиатор низковольтных диодов;
D — катушка выходного фильтра, то есть дроссель групповой стабилизации;
E — конденсаторы выходного фильтра.
Катушка и большой жёлтый конденсатор, находящиеся ниже E, являются компонентами дополнительного входного фильтра, установленного непосредственно на разъёме питания, и не являющегося фрагментом основной печатной платы.
Если схему радиолюбитель изобретает сам то он обязательно заглядывает в справочник по радиодеталям. Именно справочник является основным источником информации в данном случае.
Отличие от трансформатора
Понять, как работает трансформаторный блок питания несложно:
- Ток попадает на катушку трансформатора, где, в зависимости от назначения БП, повышается или понижается напряжение, при этом оставаясь переменным.
- Затем идет диодный мост – преобразователь. Его задача инвертировать переменное напряжение в постоянное.
- Последний блок – конденсатор, который сглаживает импульсы.
Минусов у такого БП несколько:
- Больший размер. В этой схеме питания не предусмотрен стабилизатор (за исключением выходного конденсатора).
- Стабилизация трансформаторов крайне сомнительная. Они чаще пропускают скачки, из-за чего возможна поломка техники.
В импульсных блоках питания принцип работы несколько другой: генератор создает собственный такт, который стабилизирует вольтаж. Возможно использовать миниатюрные трансформаторы, при этом не теряя мощности. Используются ключевые элементы стабилизации.
Виды и принцип работы импульсных источников питания
Основной принцип работы импульсного источника питания (ИИП) состоит в том, что постоянное напряжение (выпрямленное сетевое или от стороннего источника) преобразовывается в импульсное частотой до сотен килогерц. За счет этого намоточные детали (трансформаторы, дроссели) получаются легкими и компактными.
Принципиально ИИП делятся на две категории:
- с импульсным трансформатором;
- с накопительной индуктивностью (она также может иметь вторичные обмотки)
Первые подобны обычным трансформаторным сетевым блокам питания, выходное напряжение у них регулируется изменением среднего тока через обмотку трансформатора. Вторые работают по другому принципу – у них регулируется изменением количества накопленной энергии.
По другим признакам ИИП можно разделить на нестабилизированные и стабилизированные, однополярные и двухполярные и т.п. Эти особенности не носят столь принципиального характера.
Разновидности блоков питания
Применение нашли несколько типов инверторов, которые отличаются схемой построения:
Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.
Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.
Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.
Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.
Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.
На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.
Обратноходовой импульсный источник питания
Блок питания для шуруповерта 12в своими руками
Это одна из разновидностей импульсных источников питания, имеющих гальваническую развязку как первичных, так и вторичных цепей. Сразу был изобретён именно этот вид преобразователей, который был запатентован ещё в далёком 1851 году, а его усовершенствованный вариант применялся в системах зажигания и в строчной развертке телевизоров и мониторов, для подачи высоковольтной энергии на вторичный анод кинескопа.
Основная часть этого блока питания тоже трансформатор или может быть дроссель. В его работе есть два этапа:
- Накопление электрической энергии от сети или от другого источника;
- Вывод накопленной энергии на вторичные цепи полумоста.
Во время размыкания и замыкания первичной цепи во вторичной появляется ток. Роль размыкающего ключа выполнял чаще всего транзистор. Узнать параметры которого нужно обязательно использовать справочник. управление же этим транзистором чаще всего полевым выполняется за счёт ШИМ-контроллера.
Управление ШИМ-контроллером
Преобразование сетевого напряжения, которое уже прошло этап выпрямления, в импульсы прямоугольной формы выполняется с какой-то периодичностью. Период выключения и включения этого транзистора выполняется с помощью микросхем. ШИМ-контроллеры этих ключей являются основным активным управляющим элементом схемы. В данном случае как прямоходовой, так и обратноходовой источник питания имеет трансформатор, после которого происходит повторное выпрямление.
Для того чтобы с увеличением нагрузки не падало выходное напряжение в ИИП была разработана обратная связь которая была заведена непосредственно в ШИМ-контроллеры. Такое подключение даёт возможность полной стабилизации управляемым выходным напряжения путём изменения скважности импульсов. Контроллеры, работающие на ШИМ модуляции, дают большой диапазон изменения выходного напряжения.
Микросхемы для импульсных источников питания могут быть отечественного или зарубежного производства. Например, NCP 1252 – ШИМ-контроллеры, которые имеют управление по току, и предназначены для создания обоих видов импульсных преобразователей. Задающие генераторы импульсных сигналов этой марки показали себя как надёжные устройства. Контроллеры NCP 1252 обладают всеми качественными характеристиками для создания экономически выгодных и надежных блоков питания. Импульсные источники питания на базе этой микросхемы применяются во многих марках компьютеров, телевизоров, усилителей, стереосистем и т. д. Заглянув в справочник можно найти всю нужную и подробную информацию обо всех её рабочих параметрах.
Преимущества и недостатки ИБП
Конечно, как и любое другое электронное устройство, подобный блок питания имеет как свои достоинства, так и недостатки. Конечно, т.к. этот БП является более высокотехнологичным прибором, положительных качеств в нем намного больше, чем отрицательных, но все же есть необходимость объективного рассмотрения, а потому умалчивать о минусах тоже не стоит. Но все же, для начала перечислим плюсы, а после будем разбирать их подробнее.
Основными и несомненными достоинствами импульсного блока питания являются:
- более легкий вес;
- высокий коэффициент полезного действия;
- низкая цена;
- широкий диапазон токов;
- присутствие защиты от различных факторов.
Ну а теперь остановимся на каждом из пунктов подробнее.
Преимущества
- Малый вес и габариты достигаются за счет импульсной технологии, повышения частоты тока, а значит и уменьшения трансформаторных установок. В ИИП не требуется крупногабаритных радиаторов и обмоток. Также сокращена и емкость конденсаторов. К тому же схема выпрямления упрощается до элементарной — однополупериодной.
- Естественно, что у трансформаторных блоков питания большая часть энергии уходит на прогрев, в результате чего падает КПД. У импульсных БП незначительная часть этой энергии теряется на каскадах силовых ключей. После уже все транзисторы стабильны, а потому коэффициент полезного действия у таких БП может достигать 97%.
- Стоимость этих устройств снижается за счет расширения производства элементов для сборки подобной схемы. Они и непосредственно после появления на рынке стоили немного, а сейчас, когда ими насыщены все области продаж, их стоимость падает все ниже. Можно добавить, что и полупроводники возможно использовать менее мощные благодаря управляемым ключам.
- Широкий диапазон достигается как раз благодаря импульсным технологиям. Допускается питание разной частоты и амплитуды, что не может не сказаться и на расширении областей их применения.
- На основании того, что модули полупроводников достаточно малы, появляется возможность встраивания дополнительных блоков защиты (от короткого замыкания, перегрева, перегрузки и т.п.).
Недостатки
Если разговор зашел о плюсах, то не стоит оставлять без внимания и минусы, хотя их и ничтожно мало. Основным недочетом в работе импульсных блоков питания можно назвать высокочастотные помехи. Они естественны, т.к. само устройство работает именно на них. Как раз по этой причине используется различное шумоподавление, которое, впрочем, до конца проблему не решает.
А потому подобные ИБП не используются на некоторых высокоточных измерительных приборах.
Еще одним недостатком можно назвать некорректную работу на сверхнизких и сверхвысоких частотах — такие «стрессовые» токи могут либо вывести прибор из строя, либо на выходе он будет выдавать искаженное напряжение, не соответствующее заявленным техническим характеристикам.
Схемы и изготовление импульсных блоков питания
Импульсные блоки питания собираются на различной элементной базе. Обычно для построения ИИП применяются специализированные микросхемы, специально разработанные для создания таких устройств. За исключением самых простых блоков.
Мощный импульсный блок на ir2153
Несложные блоки питания можно строить на микросхеме IR2153. Она представляет собой мощный интегральный драйвер с таймером, подобным NE555. Частота генерации задается внешними элементами. Входов для организации обратной связи микросхема не имеет, поэтому стабилизацию тока и напряжения методом ШИМ не получить.
Расположение выводов микросхемы IR2153.
Назначение выводов приведено в таблице.
Внутренняя схема IR2153.
Для наилучшего понимания работы и назначения выводов лучше изучить внутреннюю схему. Основной момент, на который надо обратить внимание – выходные ключи собраны по полумостовой схеме.
На этой микросхеме можно собрать простой блок питания.
Схема простого БП на IR2153.
Питается IR2153 от 220 вольт через гасящий резистор R1, выпрямитель на диоде VD3, фильтр на С4. Частота генерации задается элементами С5, R2 (с указанными на схеме номиналами получается около 47 кГц). Трансформатор можно посчитать программой. В авторском варианте использовался силовой трансформатор от компьютерного БП. Штатные обмотки удалены, первичка намотана в две жилы проводом в эмалевой изоляции диаметром 0,6 мм.
Обмотка содержит 38 витков. Слои проложены изолентой. Вторичка из скрутки в 7 жил тем же проводом, для получения 24В вольт надо 7-8 витков, для другого напряжения пересчитать пропорционально.
Конструкция простого БП.
Остальные элементы схемы отдельных пояснений не требуют. Детали размещены на печатной плате, транзисторы закреплены на радиаторе.
БП с защитой от превышения тока.
Более сложная схема – с защитой транзисторов от сверхтока. Измерение организовано на трансформаторе TV1. Он мотается на ферритовом кольце диаметром 12..16 мм. Вторичная обмотка содержит 50..60 витков в два провода диаметром 0,1..0,15 мм. Потом начало одной обмотки соединяется с концом второй. Первичная обмотка содержит 1..2 витка. Уровень срабатывания защиты регулируется потенциометром R13. При превышении установленного лимита срабатывает тиристор VD4 и шунтирует стабилитрон VD3. Напряжение питания микросхемы уменьшается почти до нуля.
В схеме БП предусмотрен мягкий старт. Если генерация началась, импульсы с вывода 6 через делитель R8R9 и конденсатор С8 выпрямляются. Постоянное напряжение заряжает С7 и открывает транзистор VT1. Конденсатор С3 подключается к частотозадающей цепочке и частота генератора микросхемы снижается до рабочей частоты.
Можно ли сделать импульсный блок питания своими руками?
Иногда покупка готового импульсного блока питания является экономически нецелесообразной. В таком случае, если вы разбираетесь в электронике и умеете паять, можете сами сделать импульсный БП. Он пригодится для питания различного низковольтного электроинструмента, чтобы избежать расходования ограниченного ресурса дорогой аккумуляторной батареи. Можно также сделать зарядное устройство для смартфона, ноутбука или других мобильных гаджетов.
Прежде чем приступить к изготовлению источника питания, нужно знать, где он будет использоваться. В зависимости от области его применения определяется мощность изделия. Мощность должна выбираться с запасом. Считается, что импульсный блок питания имеет самый высокий КПД при нагрузке 60-90%.
Кроме того, требуется выбрать схему источника питания, а также определить, должно ли на выходе быть стабильное напряжение и нужно ли для этого вводить обратную связь. Обратите внимание на его номинальные параметры: напряжение, ток и мощность.
Как собрать: пошаговая инструкция
Для тех, кто хочет собрать импульсный блок питания своими руками, приведем несколько схем сборки.
Рассмотрим схему импульсного блока питания мощностью до 2 Вт. Выпрямитель и фильтр в нем собраны на резисторе R1 (от 25 до 50 Ом), диоде VD1 и конденсаторе С1 (20,0 мкФ, 400 В). В качестве высокочастотного преобразователя выступает автогенератор, собранный на транзисторе VT1, трансформаторе TR1, частотозадающей цепи резисторе R2 (470 кОм) и конденсаторе С2 (3300 пкФ, 1000 В). Напряжение, снимаемое с выходной обмотки трансформатора, выпрямляется диодом VD2 и сглаживается электролитическим конденсатором С3 (47 пФ, 50 В).
В качестве сердечника для трансформатора подойдет любой от нерабочего трансформатора, использовавшегося в зарядке мобильного телефона или в другом маломощном источнике питания. Намотка происходит в следующем порядке:
- сначала мотаем 200 витков первичной обмотки медным проводом сечением 0,08-0,1 мм;
- изолируем первичную обмотку и мотаем 5 витков базовой обмотки тем же проводом;
- производим намотку вторичной обмотки. Диаметр провода – 0,4 мм. Количество витков зависит от того, какое напряжение нужно получить на выходе из расчета один виток на один вольт.
Мнение эксперта Алексей Бартош Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Задать вопрос Внимание! Между половинками магнитного сердечника должен присутствовать небольшой немагнитный зазор. Обычно он уже есть на сердечниках, взятых с трансформаторов зарядных устройств смартфонов. Если его нет, положите слой бумаги между половинками сердечника.
Готовый трансформатор стягиваем изолентой или скотчем.
Рассмотрим однотактный блок питания, сделанный по автогенераторной схеме с самовозбуждением. Напряжение на выходе – 16 В, мощность устройства – 15 Вт.
На входе устройства переменное напряжение электрической сети выпрямляется при помощи диодного моста, собранного на диодах D1-D4 (можно использовать любые диоды, рассчитанные на напряжение 400 В и ток 0,5 А, например, N4007). За сглаживание пульсаций отвечает конденсатор С1 (20 мкФ, 400 В). Для предотвращения броска тока при включении служит резистор R1 (25-50 Ом).
Начальное смещение на базе транзистора Т1 (можно использовать 13003 или 13005) устанавливается резистором R2 (470 кОм) и диодом D6 (N4007). Чтобы сгладить скачки напряжения, возникающие при закрытии Т1, в схему включены такие элементы, как: конденсатор С2 (3300 пФ 1000 В), диод D5 (N4007) и резистор R3 (30 кОм 1 Вт либо можно использовать два резистора по 15 кОм).
Импульсы положительной обратной связи, необходимые для поддержания режима автоколебаний, через резистор R4(150 Ом) и конденсатор С3(47 пФ, 50 В) подаются на базу Т1. Цепочка состоящая из Т2, R5 (1,5 кОм), Д9 (стабилитрон КС515), нужна для стабилизации напряжения.
Высокочастотный преобразователь собран по обратноходовой схеме. Когда Т1 открыт, энергия накапливается на трансформаторе, при этом диод D7 (КД213 использовать совместно с радиатором площадью 10 см2) находится в закрытом состоянии. После закрытия транзистора Т1 происходит отдача запасенной магнитной энергии, диод D7 открывается, во вторичной цепи появляется ток, конденсатор С6 (100,0 мкФ, 25 В) заряжается. Конденсаторы С4 (2200 пФ) и С5 (0,1 мкФ) нужны для уменьшения помех.
Стабилизация выходного напряжения происходит по схеме, описанной далее. При включении прибора в сеть запускается генератор.
На вторичной обмотке появляется напряжение. Конденсатор С6 (100,0 мкФ, 25 В) заряжается. Когда напряжение на нем превысит 16,3 В открывается стабилитрон D9 (КС515). Транзистор Т2 (КТ603) открывается и закорачивает эмиттерный переход Т1. Транзистор Т1 закрывается, генератор перестает работать, и конденсатор С6 начинает разряжаться. Когда напряжение на С6 становится меньше 16,3 вольт, стабилитрон D9 закрывается и закрывает Т2. Благодаря этому Т1 открывается и работа генератора возобновляется.
Первичная обмотка w1 трансформатора намотана проводом 0,25 мм и имеет 179 витков. В базовой обмотке w2 присутствуют два витка, намотанных тем же проводом. Вторичная обмотка w2 состоит из 14 витков провода 0,6-0,7 мм.
Лампочки можно взять любые маломощные, рассчитанные на напряжение от 24 до 36 В и ток от 100 до 200 мА.
Рассмотрим импульсный БП с выходной мощностью 300 Вт.
Генератором в данной конструкции является интегральная микросхема TL494. Управляющие сигналы с выхода этой ИС подаются поочередно на МОП (MOSFET) транзисторы VT1 и VT2 (IRFZ34). Импульсы с этих транзисторов через трансформатор, формирователь импульсов приходят на мощные транзисторы VT3 и VT4 (IRFP460). Преобразователь сделан на мощных транзисторах VT3 и VT4 по полумостовой схеме.
Все четыре обмотки трансформатора TR1 намотаны проводом 0,5 мм и содержат по 50 витков. В трансформаторе TR2 первая обмотка состоит из 110 витков провода диаметром 0,8 мм. Количество витков обмотки номер два зависит от желаемого напряжения на выходе, из расчета один виток на два вольта. Обмотка три наматывается 12 витками провода диаметром 0,8 мм.
Проверка конструкции
Перед первым включением БП нужно проверить. В первую очередь проверяется монтаж, например, могли остаться следы от пайки, несмытый флюс. Какой-либо компонент, установленный на плате, может оказаться неисправным.
Если с монтажом все в порядке, можно приступать ко второй стадии проверки с помощью лампочки. В качестве лампочки можно использовать любую лампу накаливания. Для этого подключаем изготовленный нами источник питания последовательно с лампочкой, как показано на рисунке ниже.
Если лампочка не светится, значит, в цепи БП есть обрыв. Нужно проверить дорожки платы, дроссель, диодный мост.
Лампочка постоянно горит. В блоке питания короткое замыкание. Причина может быть в пробое конденсаторов, транзисторов. Нужно также проверить дорожки печатной платы, выходные цепи трансформатора.
Если лампочка вспыхнула и погасла, значит, БП исправен, конденсаторы зарядились.
Сфера применения ИБП
Эра классических трансформаторных БП уходит в небытие. Импульсные преобразователи на основе полупроводниковых стабилизаторов повсеместно их вытесняют, поскольку при тех же значениях выходной мощности характеризуются гораздо меньшими весогабаритными показателями, они надёжнее аналоговых оппонентов и обладают намного более высоким КПД, позволяя снизить тепловые потери. Наконец, ИБП могут функционировать с входным напряжением в обширном диапазоне значений. Импульсный блок такого же размера, как трансформаторный, обладает в разы большей мощностью.
В настоящее время в сферах, требующих преобразования переменного напряжения в постоянное, используются практически только импульсные инверторы, при этом они могут обеспечить и повышение напряжения, что недоступно для классических аналоговых блоков. Ещё одним достоинством ИБП является способность обеспечить смену полярности выходного напряжения. Работа на высоких частотах облегчает функцию стабилизации/фильтрации выходных импульсов.
Малогабаритные инверторы, построенные на специализированных микросхемах, являются основой зарядных устройств всевозможных мобильных гаджетов, а надёжность их такова, что срок службы существенно превышает ресурс мобильных устройств. О компьютерных блоках питания мы уже упоминали. Отметим, что принцип работы ИБП используется в 12-вольтовых драйверах питания светодиодов.
- https://radioskot.ru/publ/nachinajushhim/impulsnye_bloki_pitanija_smps/5-1-0-1603
- https://amperof.ru/elektropribory/impulsnyj-blok-pitaniya.html
- https://electrono.ru/%D1%87%D1%82%D0%BE-%D1%82%D0%B0%D0%BA%D0%BE%D0%B5-%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81%D0%BD%D1%8B%D0%B9-%D0%B1%D0%BB%D0%BE%D0%BA-%D0%BF%D0%B8%D1%82%D0%B0%D0%BD%D0%B8%D1%8F-%D0%B8%D0%B1%D0%BF
- https://Zapitka.ru/masterskaya/impulsnyy-blok-pitaniya-svoimi-rukami
- https://crast.ru/instrumenty/kak-rabotaet-impulsnyj-blok-pitanija-dlja
- https://Acums.ru/bespereboyniki-i-bloki-pitaniya/impulsniy-svoimi-rukami-luchshie-prostye-i-slozhnye-skhemy-i-sborki
- https://nastroyvse.ru/devices/raznoe/kak-rabotaet-impulsnyj-blok-pitaniya.html
Как вам статья?